Front Oncol. , 2018., Sep 5;8:325. doi: 10.3389/fonc.2018.00325.

The Complex Puzzle of Interactions Among Functional Food, Gut Microbiota, and Colorectal Cancer.

Mendonça LABM Dos Santos Ferreira R de Cássia Avellaneda Guimarães R et al.

Abstract

Colorectal cancer exerts a strong influence on the epidemiological panorama worldwide, and it is directly correlated to etiologic factors that are substantiated by genetic and environmental elements. This complex mixture of factors also has a relationship involving the structural dependence and composition of the gut microbiome, leading to a dysbacteriosis process that may evolve to serious modifications in the intestinal lining, eventually causing the development of a neoplasm. The gastrointestinal tract presents defense strategies and immunological properties that interfere in intestinal permeability, inhibiting the bacterial translocation, thus maintaining the integrity of intestinal homeostasis. The modulation of the intestinal microbiome and the extinction of risk factors associated with intestinal balance losses, especially of environmental factors, make cell and defense alterations impossible. This modulation may be conducted by means of functional foods in the diet, especially soluble fibers, polyunsaturated fatty acids, antioxidants and prebiotics that signal immunomodulatory effects in the intestinal microbiota, with preventive and therapeutic action for colorectal cancer. In summary, this review focuses on the importance of dietary modulation of the intestinal microbiota as an instrument for dysbacteriosis and, consequently, for the prevention of colorectal cancer, suggesting anticarcinogenic, and antiangiogenic properties. Among the intestinal modulating agents considered here are functional foods, especially flaxseed, oat and soy, composing a Bioactive Food Compound.

Link to Full Text

Key Findings

Colorectal carcinogenesis (CRC) is a neoplastic modality with a wide and varied incidence and geographical distribution. CRC etiology could be based on numerous genetic and environmental changes. Damage to the intestinal environment and mutations can culminate in the development of inflammatory bowel diseases (IBDs). The IBDs are one of the major genetic risk factors and are strongly linked to changes in the composition of the gut microbiota and the intestinal cell microenvironment. Functional foods and their bioactive substances provide a viable and accessible alternative in minimizing damage to the intestinal microenvironment. Fibers and polyunsaturated fatty acids (PUFAs), especially those of the n-3 series, are examples of functional foods that act on gut microbiota composition, decreasing the number of harmful bacteria. This review aims to describe the dysbacteriotic process and its consequences in the composition and conditions of the gastrointestinal tract. It also aims to describe how the immune system and its agents are involved in the repair of dysbiosis and the development of CRC and how the modulation of the gut microbiota takes place in response to functional foods and their bioactive constituents.

The anticarcinogenic property of soluble fibers like flaxseed lignan and b-glucan could be justified by short chain fatty acids (SCFAs) formation, in special acetate, propionate and butyrate, from its gut microbiota fermentation. The ability to block neoplastic cell proliferation and induce apoptosis, as well as pre-neoplastic CRC conditions, is also a feature of n-3 series PUFAs. These lipids also could alter the cell cycle components and acts on the immune system markers and gene expression modulation by regulating CRC related genes expression. The immunomodulatory effects of flaxseed are perceived from its prebiotic properties. Because it is loaded with mucilage, this food maintains the integrity of the intestinal epithelial barrier, minimizing inflammatory processes, guaranteeing the proliferation of beneficial phyla to the detriment of putrefying and harmful species. This modification guarantees an improvement in the immune defense of the host, reducing the risk of developing NCDs, especially IBDs and CRC.

Dietary modulation of the intestinal microbiota, avoiding the intake of foods that stimulate dysbiosis and intestinal inflammation, is an efficient strategy to prevent the development of CRC. In this review, several studies have demonstrated the functional chemopreventive and/or chemotherapeutic value of the foods that compose the BFC in CRC. These effects may stimulate the use of flaxseed, oat bran and soya in the diet. The functional properties and the economic character of these functional foods could help in reducing health costs and improving the quality of life of the general population, especially in the prevention and treatment of NCDs, with an emphasis on CRC.