Abstract
Prebiotics are either natural or synthetic non-digestible (non-)carbohydrate substances that boost the proliferation of gut microbes. Undigested fructooligosaccharides in the large intestine are utilised by the beneficial microorganisms for the synthesis of short-chain fatty acids for their own growth. Although various food products are now recognized as having prebiotic properties, several others, such as almonds, artichoke, barley, chia seeds, chicory, dandelion greens, flaxseeds, garlic, and oats, are being explored and used as functional foods. Considering the benefits of these prebiotics in mineral absorption, metabolite production, gut microbiota modulation, and in various diseases such as diabetes, allergy, metabolic disorders, and necrotising enterocolitis, increasing attention has been focused on their applications in both food and pharmaceutical industries, although some of these food products are actually used as food supplements. This review aims to highlight the potential and need of these prebiotics in the diet and also discusses data related to the distinct types, sources, modes of action, and health benefits.
Link to Full Text
Key Points
Prebiotics are non-digestible carbohydrate (CHO) molecules, including sugar polyols, poly and oligosaccharides, and resistant starches, as well as fiber that have a beneficial role in both the maintenance and progression of gut microflora. Prebiotics are known for their ability to nourish gut microbes present in the gastrointestinal tract (GIT) and substantially improve their metabolic activity, enhancing digestion, nutrient absorption ability, and the immune system, while curbing the growth of pathogenic microbes.
Prebiotics are generally found in different food sources, such as chicory, chia seeds, dandelion greens, flaxseeds, onion, garlic, almonds, artichoke, oats, barley, and many other plants, although they can also be synthesized via enzymatic digestion of complex. Generally, gut microbes use prebiotics as nutrient sources for their proliferation and metabolic activity they have been extensively used in food industries as functional food supplements in different preparations. In this sense, this review focuses on providing updated data about the need for prebiotics and covers information related to their various types, sources, modes of action, and health benefits. A study showed that the consumption of flaxseed could modify the colon’s microenvironment, significantly enhancing the proliferation of Prevotella spp. up to 20 times while repressing the growth of Akkermansia muciniphila by 30 times. Another study showed that flaxseed consumption can decrease the growth of Porphyromonadaceae and Proteobacteria in the gut and may also positively affect the alcoholic liver condition. Further work on the prebiotic effects of flaxseed is warranted.