Abstract
Docosahexaenoic acid (DHA) is critical for normal brain development and function. DHA is in danger of being significantly reduced in the human food supply, and the question of whether its metabolic precursor, the essential n-3 alpha linolenic acid (ALA) during pregnancy, can support fetal brain DHA levels for optimal neurodevelopment, is fundamental. Female mice were fed either ALA-enriched or Control diet during pregnancy and lactation. The direct effect of maternal dietary ALA on lipids was analyzed in liver, red blood cells (RBC), brain and brain vasculature, together with genes of fatty acid metabolism and transport in three-week-old offspring. The long-term effect of maternal dietary ALA on brain fatty acids and memory was studied in 19-week-old offspring. Three-week-old ALA offspring showed higher levels of n-3 ALA fatty acids in liver, RBC, blood-brain barrier (BBB) vasculature and brain parenchyma, DHA enrichment in brain phospholipids and higher gene and protein expression of the DHA transporter, major facilitator superfamily domain containing 2a (Mfsd2a), compared to Controls. 19-week-old ALA offspring showed higher brain DHA levels and better memory performance than Controls. Conclusions: the increased brain DHA levels induced by maternal dietary ALA during pregnancy-lactation, together with the up-regulated levels of Mfsd2a, may indicate a mode for greater DHA uptake with long-term impact on better memory in ALA offspring.
Link to Full Text