Abstract
α-Linolenic acid (ALA), an essential fatty acid, has anticancer activity in breast cancer, but the mechanism of its effects in triple-negative breast cancer (TNBC) remains unclear. We investigated the effect of ALA on Twist1, which is required to initiate epithelial-mesenchymal transition (EMT) and promotes tumor metastasis, and Twist1-mediated migration in MDA-MB231, MDA-MB468 and Hs578T cells. Twist1 protein was constitutively expressed in these TNBC cells, particularly MDA-MB-231 cells. Treatment with 100 μM ALA and Twist1 siRNA markedly decreased the Twist1 protein level and cell migration. Moreover, ALA transiently attenuated the nuclear accumulation of STAT3α as well as Twist1 mRNA expression. Treatment with ALA significantly attenuated the phosphorylation of JNK, ERK and Akt and decreased the phosphorylation of Twist1 at serine 68 in MDA-MB-231 cells. ALA accelerated Twist1 degradation in the presence of cycloheximide, whereas the ubiquitination and degradation of Twist1 by ALA was suppressed by MG-132. Pretreatment with ALA mimicked Twist1 siRNA, increased the protein expression of epithelial markers such as E-cadherin, and decreased the protein expression of mesenchymal markers including Twist1, Snail2, N-cadherin, vimentin, and fibronectin. Our findings suggest that ALA can be used not only to abolish EMT but also to suppress Twist1-mediated migration in TNBC cells.
Link to Full Text