Key Findings:
Dietary n-6 and n-3 fatty acids impact the levels of DHA in brain and retina. The brain-derived neurotrophic factor (BDNF) has positive roles in promoting neurogenesis and neuronal survival. ALA treatment can be beneficial for the treatment of many neurological diseases, particularly stroke. In this study, supplementation of ALA increased the expression of BDNF. Considering the neuroprotective and neurotrophic characteristics of BDNF, ALA treatment could be a feasible approach to reduce infarct size in stroke patients. Thus, ALA could be used in adjunction with routine stroke treatments to minimize lesions caused by stroke.
ABSTRACT:
Background aims: Dietary omega-6 and omega-3 fatty acids have remarkable impacts on the levels of DHA in the brain and retina. Low levels of DHA in plasma and blood hamper visual and neural development in children and cause dementia and cognitive decline in adults. The level of brain-derived neurotrophic factors (BDNF) changes with dietary omega-3 fatty acid intake. BDNF is known for its effects on promoting neurogenesis and neuronal survival. Methods: In this study, we examined the effect of the oral consumption of α-Linolenic acid (ALA) on blood levels of BDNF and Malondialdehyde (MDA) in healthy adult humans. 30 healthy volunteers, 15 men and 15 women, were selected randomly. Each individual served as his or her own control. Before consuming the Flaxseed oil capsules, 5cc blood from each individual was sampled in order to measure the plasma levels of BDNF and MDA as baseline controls. During the experiment, each individual was given 3 oral capsules of flaxseed oil, containing 500mg of alpha linolenic acid, daily for one week. Then, plasma levels of BDNF and MDA were tested. Results: The plasma levels of BDNF and MDA significantly (P < 0.05) increased in individuals who received the oral capsules of ALA. Plasma levels of BDNF increased more in the women in comparison with the men. Conclusion: ALA treatment could be a feasible approach to reduce size of infarcts in stroke patients. Thus, ALA could be used in adjunction with routine stroke therapies to minimize brain lesions caused by stroke. (Authors Abstract)